Traffic within the cytochrome b6f lipoprotein complex: gating of the quinone portal.

نویسندگان

  • S Saif Hasan
  • Elizabeth A Proctor
  • Eiki Yamashita
  • Nikolay V Dokholyan
  • William A Cramer
چکیده

The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product of the p-side quinol oxidation. Although the transmembrane core and the chemistry of quinone redox reactions are conserved in bc complexes, the rate of superoxide generation is an order of magnitude greater in the b6f complex, implying that functionally significant differences in structure exist between the b6f and bc1 complexes on the p-side. A unique structure feature of the b6f p-side quinol oxidation site is the presence of a single chlorophyll-a molecule whose function is unrelated to light harvesting. This study describes a cocrystal structure of the cytochrome b6f complex with the quinol analog stigmatellin, which partitions in the Qp portal of the bc1 complex, but not effectively in b6f. It is inferred that the Qp portal is partially occluded in the b6f complex relative to bc1. Based on a discrete molecular-dynamics analysis, occlusion of the Qp portal is attributed to the presence of the chlorophyll phytyl tail, which increases the quinone residence time within the Qp portal and is inferred to be a cause of enhanced superoxide production. This study attributes a novel (to our knowledge), structure-linked function to the otherwise enigmatic chlorophyll-a in the b6f complex, which may also be relevant to intracellular redox signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding sites of lipophilic quinone and quinone analogue inhibitors in the cytochrome b6f complex of oxygenic photosynthesis.

The main structural features of the cytochrome b6f complex, solved to 3.0-3.1 A (1 A = 10(-10) m) in the cyanobacterium Mastigocladus laminosus and the green alga Chlamydomonas reinhardtii are discussed. The discussion is focused on the binding sites of plastoquinone and quinone analogue inhibitors discerned in the structure. These sites mark the pathway(s) of quinone translocation across the c...

متن کامل

Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity.

The cytochrome b6f complex provides the electronic connection between the photosystem I and photosystem II reaction centers of oxygenic photosynthesis and generates a transmembrane electrochemical proton gradient for adenosine triphosphate synthesis. A 3.0 angstrom crystal structure of the dimeric b6f complex from the thermophilic cyanobacterium Mastigocladus laminosus reveals a large quinone e...

متن کامل

Evolution of photosynthesis: time-independent structure of the cytochrome b6f complex.

Structures of the cytochrome b(6)f complex obtained from the thermophilic cyanobacterium Mastigocladus laminosus and the green alga Chlamydomonas reinhardtii, whose appearance in evolution is separated by 10(9) years, are almost identical. Two monomers with a molecular weight of 110,000, containing eight subunits and seven natural prosthetic groups, are separated by a large lipid-containing "qu...

متن کامل

Comparison of Monte Carlo simulations of cytochrome b6f with experiment using Latin hypercube sampling.

We have programmed a Monte Carlo simulation of the Q-cycle model of electron transport in cytochrome b(6)f complex, an enzyme in the photosynthetic pathway that converts sunlight into biologically useful forms of chemical energy. Results were compared with published experiments of Kramer and Crofts (Biochim. Biophys. Acta 1183:72-84, 1993). Rates for the simulation were optimized by constructin...

متن کامل

Molecular control of a bimodal distribution of quinone-analogue inhibitor binding sites in the cytochrome b(6)f complex.

The 3.0-3.1A X-ray structures of the cytochrome b(6)f complex from Mastigocladus laminosus and Chlamydomonas reinhardtii obtained in the presence of the p-side quinone-analogue inhibitor tridecyl-stigmatellin (TDS) are very similar. A difference occurs in the p-side binding position of TDS. In C.reinhardtii, TDS binds in the ring-in mode, as previously found for stigmatellin in X-ray structures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 107 7  شماره 

صفحات  -

تاریخ انتشار 2014